Extensions 1→N→G→Q→1 with N=C22 and Q=S4

Direct product G=N×Q with N=C22 and Q=S4
dρLabelID
C22×S412C2^2xS496,226

Semidirect products G=N:Q with N=C22 and Q=S4
extensionφ:Q→Aut NdρLabelID
C22⋊S4 = C22⋊S4φ: S4/C22S3 ⊆ Aut C2286+C2^2:S496,227
C222S4 = A4⋊D4φ: S4/A4C2 ⊆ Aut C22126+C2^2:2S496,195

Non-split extensions G=N.Q with N=C22 and Q=S4
extensionφ:Q→Aut NdρLabelID
C22.S4 = C42⋊S3φ: S4/C22S3 ⊆ Aut C22123C2^2.S496,64
C22.2S4 = Q8.D6φ: S4/A4C2 ⊆ Aut C22164-C2^2.2S496,190
C22.3S4 = Q8⋊Dic3central extension (φ=1)32C2^2.3S496,66
C22.4S4 = C2×CSU2(𝔽3)central extension (φ=1)32C2^2.4S496,188
C22.5S4 = C2×GL2(𝔽3)central extension (φ=1)16C2^2.5S496,189
C22.6S4 = C2×A4⋊C4central extension (φ=1)24C2^2.6S496,194

׿
×
𝔽